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(57) ABSTRACT

A computer-implemented method of detecting a foreground
data in an image sequence using a dual sparse model frame-
work includes creating an image matrix based on a continu-
ous image sequence and initializing three matrices: a back-
ground matrix, a foreground matrix, and a coefficient matrix.
Next, a subspace recovery process is performed over multiple
iterations. This process includes updating the background
matrix based on the image matrix and the foreground matrix;
minimizing an .- 1 norm of the coefficient matrix using a first
linearized soft-thresholding process; and minimizing an [.-1
norm of the foreground matrix using a second linearized
soft-thresholding process. Then, background images and
foreground images are generated based on the background
and foreground matrices, respectively.

18 Claims, 10 Drawing Sheets
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1
ROBUST SUBSPACE RECOVERY VIA DUAL
SPARSITY PURSUIT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Appli-
cation Ser. No. 61/871,973 filed Aug. 30, 2013 which is
incorporated herein by reference in its entirety.

TECHNICAL FIELD

The present invention relates generally to methods, sys-
tems, and apparatuses for integrating a method for segment-
ing image data by recovering a union of low-dimensional
subspaces in presence of sparse corruptions. The disclosed
methods, systems, and apparatuses may be applied to, for
example, computer vision problems such as video back-
ground subtraction, intensity variation segmentation on
medical images, and face clustering.

BACKGROUND

Separating data from errors and noise has always been a
critical and important problem in signal processing, computer
vision and data mining. Robust principal component pursuit
is particularly successful in recovering low dimensional
structures of high dimensional data from arbitrary sparse
outliers. However, successful applications of sparse models
in computer vision and machine learning have increasingly
hinted at a more general model, namely that the underlying
structure of high dimensional data looks more like a union of
subspaces (UoS) rather than a single low dimensional sub-
space. Therefore, it is desired to extend such techniques to
high dimensional data modeling where the union of sub-
spaces is further impacted by outliers and errors. This prob-
lem is intrinsically difficult, since the underlying subspace
structure may be corrupted by unknown errors which, in turn,
may lead to unreliable measurement of distance among data
samples and cause data to deviate from the original sub-
spaces.

SUMMARY

Embodiments of the present invention address and over-
come one or more of the above shortcomings and drawbacks,
by providing methods, systems, and apparatuses that utilize a
dual sparse model as a framework to recover underlying
subspaces of data samples from measured data corrupted by
general sparse errors. The problem is formulated as a non-
convex optimization problem and a sufficient condition of
exact recovery is demonstrated. In addition, in some embodi-
ments, an algorithm referred to as Subspace Recovery via
Dual Sparsity Pursuit (RoSure-DSP) is used to approximate
the global solution of the optimization problem. This tech-
nology is particularly well-suited for, but not limited to, com-
puter vision problems such as video background subtraction,
intensity variation segmentation on medical images, and face
clustering.

According to one embodiment of the present invention, a
computer-implemented method of detecting a foreground
data in an image sequence using a dual sparse model frame-
work includes creating an image matrix based on a continu-
ous image sequence and initializing three matrices: a back-
ground matrix, a foreground matrix, and a coefficient matrix.
Next, a subspace recovery process is performed. This process
includes updating the background matrix based on the image
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matrix and the foreground matrix; minimizing an [.-1 norm
of the coefficient matrix using a first linearized soft-thresh-
olding process; and minimizing an -1 norm of the fore-
ground matrix using a second linearized soft-thresholding
process. The subspace recovery process is performed over
multiple iterations (e.g., until convergence of one or more of
the background matrix, the foreground matrix, and the coef-
ficient matrix). Then, background images and foreground
images are generated based on the background and fore-
ground matrix, respectively.

In some embodiments, an image sequence may be gener-
ated based on the background images and/or the foreground
images. For example, in medical applications, a background
image sequence may be generated depicting a lymphatic sys-
tem (or a blood vessel) and a foreground image sequence may
be generated showing passage of fluid through the lymphatic
system (or the blood vessel) to an organ or tissue. The fore-
ground image sequence may then be used to generate a mea-
surement of intensity variation.

The aforementioned method can be enhanced with addi-
tional features in some embodiments. For example, the sub-
space recovery process may utilize one or more tuning param-
eters such as Lagrange multiplier values. These tuning
parameters may be applied, for example, by the first linear-
ized soft-thresholding process and the second linearized soft-
thresholding process discussed above. The subspace recovery
process may then update these tuning parameters during each
iteration.

According to another aspect of the present invention, a
computer-implemented method of performing intensity
variation segmentation using a dual sparse model framework
includes receiving a myocardial perfusion image sequence
comprising a plurality of images depicting fluid passing
through a cardiac structure over time. An image matrix is
created based on a continuous image sequence and three other
matrices are initialized: a background matrix, a foreground
matrix, and a coefficient matrix. Then, a subspace recovery
process is performed over a plurality of iterations. In one
embodiment, the subspace recovery process includes updat-
ing the background matrix based on the image matrix and the
foreground matrix, minimizing an [.-1 norm of the coeffi-
cient matrix using a first linearized soft-thresholding process;
and minimizing an [.—1 norm of the foreground matrix using
a second linearized soft-thresholding process. Additionally,
as with the other method discussed above, the subspace
recovery process may utilize one or more tuning parameters
such as Lagrange multiplier values. Then, the foreground
matrix may be used to generate a measurement of intensity
variation across the myocardial perfusion image sequence. In
some embodiments, the background matrix is used to gener-
ate a sequence of images depicting motion of the cardiac
structure over time.

Any of the methods discussed above can also be performed
as part of a system, apparatus, or article of manufacture.
Additional features and advantages of the invention will be
made apparent from the following detailed description of
illustrative embodiments that proceeds with reference to the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other aspects of the present invention
are best understood from the following detailed description
when read in connection with the accompanying drawings.
For the purpose of illustrating the invention, there are shown
in the drawings embodiments that are presently preferred, it
being understood, however, that the invention is not limited to
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the specific instrumentalities disclosed. Included in the draw-
ings are the following Figures:

FIG. 1 provides an example implementation of a RoSure-
DSP process, according to some embodiments of the present
invention;

FIG. 2 provides an example of a system for performing
robust subspace recovery via dual sparsity pursuit, according
to some embodiments of the present invention;

FIG. 3 provides a set of sample frames of intensity varia-
tion segmentation of myocardial perfusion image sequences,
according to some embodiments of the present invention;

FIG. 4 provides an example of subspace exact recovery,
according to some embodiments of the present invention, in
comparison with robust PCA;

FIG. 5 provides an illustration of the sparse coefficient
matrix W, as may be used in some embodiments ofthe present
invention;

FIG. 6 is the overall recovery results of RoSure-DSP, it may
be implemented in various embodiments of the present inven-
tion in comparison with robust PCA and another conventional
technique, Sparse Subspace Clustering (“SSC”);

FIG. 7A shows a segmentation results in a video back-
ground subtraction application with a static background,
according to some embodiments of the present invention;

FIG. 7B shows a segmentation results in a video back-
ground subtraction application with a moving background,
according to some embodiments of the present invention;

FIG. 8 provides two images of the sparse coefficient matrix
W, as may be used in background subtraction applications
such as those illustrated in FIGS. 7A and 7B

FIG. 9A shows a set of sample face images in the Extended
Yale Face Database B;

FIG. 9B provides an illustration of recovery results of
human face images, according to some embodiments of the
present invention; and

FIG. 10 illustrates an exemplary computing environment
within which embodiments of the invention may be imple-
mented.

DETAILED DESCRIPTION

Systems, methods, and apparatuses are described herein
which recover underlying subspaces of data samples from
measured data corrupted by general sparse errors. Successful
applications of sparse models in computer vision and
machine learning imply that in many real-world applications,
high dimensional data is distributed in a union of low dimen-
sional subspaces. Nevertheless, the underlying structure may
be affected by sparse errors and/or outliers. A dual sparse
model is described herein as a framework to analyze this
problem, including an algorithm to recover the union of sub-
spaces in presence of sparse corruptions. The techniques
described herein may be applied, for example, in computer
vision applications such intensity variation segmentation on
myocardial perfusion imaging and background subtraction in
surveillance video sequences.

A brief summary of notations used throughout this disclo-
sure is as follows. The dimension of mxn matrix X is denoted
as dim(X)=(m, n). The notation |[X||, denotes the number of
nonzero elements in X, while |[X||, is the same as the vector1;
norm. For a matrix X and an index set I, we let X, be the
submatrix containing only the columns of indices in J. The
notation col(X) denotes the column space of matrix X. The
orthogonal projection of matrix X on the support of A is
denoted as Pg X, and Pg c=X-Pg, X. The sparsity of mxn
matrix X is denoted by
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In many real-world applications such perfusion imaging,
highly dimensional data is distributed in a union of low-
dimensional subspaces. The underlying structure of this data
may be affected by, for example, sparse errors or outliers in
the data. The challenge then is to recover the UoS structure for
sparse corruptions of the data. At a high-level, the problem
being addressed by techniques described herein is an optimal
way to decompose a set of data samples X=[x,, X, . . . X, ] into
a low rank portion L and a sparse portion S. Applying the
general concepts of UoS structure recovery, this problem can
be restated as determining a partition of X, such that each part
X, can be decomposed into a low dimensional subspace (rep-
resented as low rank matrix L) and a sparse error (represented
as a sparse matrix S;) where

X =LpSpI=1...J

Each L, represents one low dimensional subspace of the origi-
nal data space, and L=[L,IL,! .. . IL,] the union of subspaces.
Furthermore, the partition would recover the clustering
structure of original data samples hidden from the errors
S=[S,I8,! ... 1S,]. Concretely, the goal of solving this prob-
lem is twofold. First, the correct partition of data may be
determined so that data subset resides in a low dimensional
subspace. Second, each underlying subspace may be recov-
ered from the corrupted data. In the context of image process-
ing, matrix [, contains the background data and the matrix S
contains mostly zero columns, with several non-zero ones
corresponding to the foreground data.

Consider a data set 1ER? uniformly sampled from a union
of subspaces S=U,_,” S,. Assuming sufficient sample density,
each sample can be represented by the others from the same
subspace with probability 1 (all hyperplanes of a subspace
here are of measure 0). Therefore the distribution of samples
will span the entire subspace with probability 1. Mathemati-
cally, we represent the data matrix by L=[1;11,] . . . L],
yielding [=[.W, where W is nxn block-diagonal matrix.

More specifically, if n, is the number of samples from a
subspace S,, and b, the dimension of block W, 0of W, then n,=b,.
It follows that b;=max, {n,}. This condition constrains W to be
a sparse matrix, since

S(W) = w - max{n‘-}.
15 n
It is worth noting that, to recover the underlying data sampled
from the union of spaces, it is equivalent to find a matrix [ and
W under the above constraints.

The space of W can be defined as a k-block-diagonal
matrix. A k-block-diagonal matrix is any nxn matrix M where
(i) there exists a permutation matrix P, such that M=PWP~! is
a block-diagonal matrix and (ii) the maximum dimension of
each block of M is less than or equal to k+1. The space of all
such matrices is denoted as BM,.

The space of L can be defined based on BM,, using k-self
representative matrices. A k-self-representative matrix is a
dxn matrix X with no zero column, where X=XW, WEBM,,
W,=0. The space of all such dxn matrices is denoted by SR,

Consider the case that sample], is corrupted by some sparse
error e,. Intuitively, we want to separate the sparse errors from
the data matrix X and present the remainder in SR,. Using the
terminology discussed above, we can state the problem as:

minE]

s.t.X=L+E, LESR, o)
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We have some fundamental difficulties in solving this prob-
lem on account of the combinatorial nature of ||¥|, and the
complicated geometry of SR,. For the former one, there are
established results of using the 1, norm to approximate the
sparsity of E. SR,. is challenging because it is a non-convex
space and it is not path-connected. Intuitively, it is helpful to
consider L;, [L,&SR, and let col(L.,)N col(L.,)=0. Then all
possible paths connecting [, and L, must pass the origin,
given that L is a matrix with no zero columns, and 0 & SR,.
SR, can hence be divided into at least two components S, and
SR,/S,

To avoid solving (1) with a disconnected feasible region,
this constraint can be integrated into the objective function.
First, a W,-function on a matrix space may be defined where
for any dxn matrix X, if there exists WEBM,, such that
X=XW, then W,(X)=ming||W/|,, s.t. X=XW, W,=0, WEBM,.
If such a W does not exist, then W (X)=co.

Then instead of using equation (1), the following optimi-
zation problem may be utilized:

i (2)
min Wo(L) +AllElly

st. X=L+E

The relation of equations (1) and (2) is established by the
following lemma: for certain A, if (L, E) pair of global opti-
mizer of equation (2), then ([, ) is also a global optimizer of
equation (1).

Next, the parsimonious property of 1, norm is leveraged to
approximate ||*||,. First, the definition of W(*) is extended to
an 1; norm-based function referred to a W,-function on a
matrix space. The W -function on a matrix space is defined as
follows: for any dxn matrix X, if there WEBM,, such that
X=XW, then W, (X)=ming||W||,, st X=XW, W,=0, WEBM,.
If such a W does not exist, then W, (X)=cc. The optimization
problem set out in equation (2) can then be reformulated as

min W, (L)+2NE],

stX=L+E 3)

Note that equation (3) bears a similar form to the problem
of conventional robust PCA. Intuitively, both problems
attempt to decompose the data matrix into two parts: one with
a parsimonious support, and the other also with a sparse
support, however in a different domain. For robust PCA, the
parsimonious support of the low rank matrix lies in the sin-
gular values. In our case, the sparse support of L. lies in the
matrix W in the W, function, meaning that columns of L can
be sparsely self-represented.

Animportant question is when the underlying structure can
be exactly recovered by solving equation (3). More specifi-
cally, when the solution of (L, E) is exact and when does W
correctly reflect the true clustering structure. For the former,
we establish a sufficient condition of exact decomposition of
L and E as follows:

Theorem 1 (L,; EO) can be exactly recovered by solving (3)
with A>0, i.e. then (L, E)=(L,; EO) if VA for same dimension
of L, at least one of the following conditions is true:

for any partition of Lo=/L|L,!. .. IL;], Icol(L;)I<k+1,
and 4=/4,14,| ... 14,] accordingly, 37, such that
LA, is full rank. 1.
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The first condition of Theorem 1 means that the perturba-
tion A on L. could lead to a non-feasible point and the second
condition states that E is sparse in a way that any feasible
move will create a larger component outside the support of E
then inside. Intuitively, this theorem states that the space SR,
and E should be nearly “incoherent” to each other, in the sense
that any change of L, i.e. A=L'-L, will make E'=E_-A less
sparse, and on the other hand, any sparse solution E'will move
the corresponding L' off of space SR,.

After having exact L and E, the problem of finding W of W,
given L is equivalent to subspace clustering without outliers.
Concretely, this theorem guarantees that if the underlying
subspaces are nottoo “close”, and the distribution of points in
each subspace is not too skewed, then w, =0 if and only if |,
and 1, are in the same subspace.

Under the conditions stated above, finding W,(L) can be
accomplished by turning the condition LESR,, to W, =0, sub-
sequently modifying W,(L) into a convex function and mak-
ing it defined in a connected domain. Specifically, we have

Wi(L) = min W, @

st. L=LW,W; =0

Substituting W, (L) by Wl (L) in (3), it allows us to relax the
constraints of (3) and directly work on the following problem,

i ®
min W1l + AlLE],

st. X=L+E, L=LW,W;=0

Other than posing this problem as a recovery and clustering
problem, we may also view it from a dictionary learning
angle. Note that the constraint X=[ +E may be rewritten as
X=LW+E, to therefore reinterpret the problem of finding L.
and E as a dictionary learning problem. In addition to the
sparse model, atoms in dictionary L. are achieved from data
samples with sparse variation.

Obtaining an algorithmic solution to (5) is complicated by
the bilinear term in constraints which lead to a nonconvex
optimization. In some embodiments, the successes of alter-
nating direction method (ADM) and linearized ADM
(LADM) m leveraged in a large scale sparse representation
problem to focus on designing an appropriate algorithm to
approximate the global minimum of (5).

For example, in one embodiment, the solution to equation
(5) is performed by a technique based on linearized ADMM
and referred to herein as Robust Subspace Recovery via Dual
Sparsity Pursuit (RoSure-DSP). Concretely, the sparsity of E
and W is pursued alternately until convergence. Besides the
effectiveness of ADMM on 1, minimization problems, a more
profound rationale for this approach is that the augmented
Lagrange multiplier (ALM) method can address the non-
convexity of (5). It is understood in the art that, in the context
of ALM, the duality gap is zero when a solution exists and the
objective function is lower bounded. It hence follows that
with a sufficiently large augmented Lagrange multiplier u the
global optimizer may be approximated by solving the dual
problem. Specifically, substituting [. by X-E, and using
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L=LW, we can reduce (5) to a two-variable problem, and
hence write the augmented Lagrange function of (5) as fol-
lows,

LE, W, Y, 1) = AEll, +[IWIl; + ©

(X =BW - (X - B, V) + S0 -EW - (X - D |

FIG. 1 provides an example implementation of a RoSure-
DSP process 100, according to some embodiments of the
present invention. This process 100 may be performed, for
example, using an Image Processing Computer such as Com-
puter 215 illustrated in FIG. 2. At 105 A, the Image Processing
Computer receives a continuous image sequence from an
external source (e.g., a medical imaging device, a surveil-
lance computer, etc.). Next, at 105B, an image matrix X is
created using the image sequence. For example, each column
of'the image matrix X may include data from one image in the
sequence. Then, at 105C, a background matrix L, a fore-
ground matrix E, and a weighing matrix W are created and set
to initialize values (e.g., all zeros).

Continuing with reference to FIG. 1, beginning at 105D, an
iterative process is performed to calculate values for the back-
ground matrix L, the foreground matrix E, and the weighing
matrix W. At 105D, the background matrix L. is updated based
on the image matrix X and the foreground matrix E. For
example, in some embodiments, the foreground matrix E is
subtracted from the image matrix X to provide an updated
background matrix L. Next, at 105E and 105F, the coefficient
matrix W and the foreground matrix E are updated by mini-
mizing an L.-1 norm of each respective matrix using linear-
ized soft-thresholding process. Specifically, letting W=I-W
in equation (6), the values of W and E may be updated as
follows:

. M 7
Wis = argmin Wl + Lt W = Ly, Yi) + §||Lk+1W - Ll ™

Ei1 = arngin AllEN, +<—Lk+1 Wit Yk> + g”LkHWkH”i-- ®

The solution of (7) and (8) is approximated in each iteration
by linearizing the augmented Lagrange term,

LT (L Wi =Y,/ (&)
Wey =T 1 (Wk + k+1( +1 Wik k ﬂk)]’
=7 m
o o7 (10)
Ly i Wiy =Y [y W
Fiuy :TL(Ek + ( a1 Wil — Yy ﬂk) k+1]’
i m

where 1,z|[L|l,%, M,2|[W]|,%, and T(*) is sofi-thresholding
operator. In some embodiments, the process 100 includes an
additional step (not shown in FIG. 3) where the, the Lagrange
multipliers are updated as follows,

Y =YitlLio /W1 =Ly 1) (11

Hper 1=PHx (12)

Steps 105D-105E are repeated for a plurality of iterations.
Following each iteration, at 105G, the values of the back-
ground matrix L, the foreground matrix E, and/or the weigh-
ing matrix W are compared to those calculated in previous
iterations to determine whether values have converged. If
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they have not, the process is repeated at 105D. However, ifthe
values have converged, at 105H, the process concludes where
the background matrix [ and the foreground matrix E are
used to generate background and foreground images, respec-
tively.

FIG. 2 provides an example ofa system 200 for performing
robust subspace recovery via dual sparsity pursuit, according
to some embodiments of the present invention. In this
example, robust subspace recovery is applied to perform
intensity variation segmentation in myocardial perfusion
imaging applications. As is well understood in the art, the
intensity variation in myocardial perfusion imaging plays an
important role in coronary artery diseases. It is often neces-
sary to correct the cardiac motion and to register the image
sequence to acquire accurate intensity changes. Nevertheless,
the intensity variation itself may also affect the performance
of registration. Therefore, the decomposition of motion and
intensity change of myocardial perfusion imaging may poten-
tially enhance the registration performance and hence the
measurement of intensity variation. The periodic feature of
cardiac motion and the relatively sparse support of the inten-
sity change are ideally adapted to the techniques described
herein.

As is well understood in the art, perfusion imaging is
performed by first injecting a contrast agent intravenously
into a patient. An imaging device such as a Magnetic Reso-
nance Imaging device is then used to acquire an image
sequence of a volume of interest showing distribution of the
contrast agent through the volume. The acquired image
sequence is processed to determine the changes in the image
intensities over time. These changes are then evaluated to
determine whether there are any abnormal changes in signal
intensities which could represent a perfusion defect (e.g.,
cardiac infarction) in the volume of interest.

Continuing with reference to FIG. 2, following injection of
acontrast agent into a patient’s bloodstream, Imaging Device
205 is used to acquire a sequence of images 210 of the
patient’s heart over multiple cardiac cycles. In the example of
FIG. 2, the Imaging Device 205 is illustrated as a Magnetic
Resonance Device. However, other imaging devices may
similarly be used in other embodiments of the present inven-
tion. The image sequence 210 is received by Image Process-
ing Computer 215. A Robust Subspace Recovery Processor
215A in the Image Processing Computer 215 executes an
algorithm (described in greater detail below) which separates
the image sequence 210 into a foreground portion 215C and
a background portion 215B. Within the context of perfusion
analysis the foreground portion includes the contrast agent
moving through the imaged volume. The respective intensity
values of the foreground portion 215C and the background
portion 215B are then evaluated by the Intensity Variation
Analysis Processor 215D to determine any abnormalities in
the imaged volume. For example, in cardiac applications, one
or more of the foreground portion 215C and the background
portion 215B may be used to identify any infarcted areas of
the anatomical area.

FIG. 3 provides a set 300 of sample frames of intensity
variation segmentation of myocardial perfusion image
sequences, according to some embodiments of the present
invention. Images 305A and 305B show the background and
foreground, respectively extracted by applying the robust
subspace recovery algorithm described herein to the original
image frame shown in image 305C. Note that images 305A,
305B, and 305C are larger versions of the images presented in
FIG. 1, presented here to provide additional detail. Image
310A, 310B, and 310C shown the background, foreground,
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and original frame, respectively, for a different example in
which robust subspace recovery is used.

FIG. 4 provides an example of subspace exact recovery,
according to some embodiments of the present invention, in
comparison with robust Principal Component Analysis
(PCA). The data matrix is fixed to be a 200x200 matrix, and
all data points are sampled from a union of 5 subspaces. Note
that (Lz 5,00 Eroswre) @a0d (Lo, Ey) are almost identical. FI1G.
5 provides an illustration 500 of the sparse coefficient matrix
W, as may be used in some embodiments of the present
invention. In FIG. 5, one can observethat W, _,.... shows clear
clustering properties such that w, ~0, when 1, 1, are not in the
same subspace.

FIG. 6 is the overall recovery results of RoSure-DSP, it may
be implemented in various embodiments of the present inven-
tion in comparison with robust PCA and another conventional
technique, Sparse Subspace Clustering (“SSC”). White
shaded areas indicate a lower error and hence amount to exact
recovery. The dimension of each subspace is varied from 1 to
15, and the sparsity of S from 0.5% to 15%. Each submatrix
L=X,Y/ with nxd matrices X, and Y,, are independently
sampled from an i.i.d normal distribution. The recovery error
is measured aserr(L)=||L,—L|[/|L |l A significant larger
range of RoSure-DSP may be observed compared to robust
PCA and SSC. The differences between RoSure-DSP and
robust PCA are due the difference of data models. Concretely,
when the sum of the dimension of each subspace is small, the
UoS model degenerates to a “low-rank+sparse” model, which
suits robust PCA very well. On the other hand, when the
dimension of each subspace increases, the overall rank of L
tends to be accordingly larger and hence the low rank model
may not hold anymore. Since RoSure-DSP is designed to fit
UoS model, it can recover the data structure in a wider range.
For SSC, this method specifically fits the condition when only
a small portion of data includes outliers. Under the assump-
tion that most of the data is corrupted, it is hence very difficult
to reconstruct samples by other corrupted ones.

The techniques described herein may also be extended to
address many computer vision and machine learning prob-
lems. For example, FIGS. 7A and 7B demonstrate how the
techniques may be applied to video background subtraction
applications, according to some embodiments of the present
invention. Surveillance videos can be naturally modeled as an
UoS model due to their relatively static background and
sparse foreground. The power of the UoS model described
herein lies in coping with both a static camera and a panning
one with periodic motion. FIG. 7A shows the segmentation
results with a static background for two images. The first row
of images in FIG. 7A includes background and foreground
images for an original image frame. The second row includes
background and foreground images for a different image
frame. For the scenario of a “panning camera”, a sequence
was generated by cropping the previous video. The cropped
region is swept from bottom right to top left and then back-
ward periodically, at the speed of 5 pixels per frame. The
results for a moving camera are shown in FIG. 7B. Again,
each row shows the background and foreground results for a
distinct image. One may observe that the results in the moving
camera scenario are only slightly worse than the static case.

FIG. 8 provides two images of the sparse coefficient matrix
W, as may be used in background subtraction applications
such as those illustrated in FIGS. 7A and 7B. Specifically,
image 805 shows matrix W without rearrangement according
to the position of the camera, while image 810 shows matrix
W with rearrangement according to the position of the camera
Interestingly, matrix W provides important information about
the relations among data points, which potentially may be
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used to cluster data into individual clusters. In image 805 we
can see that, for each column of the coefficient matrix W, the
nonzero entries appear periodically. In considering the peri-
odic motion of the camera, every frame may be analyzed as
mainly represented by the frames when the camera is in a
similar position, i.e. a similar background, with the fore-
ground moving objects as outliers. Hence, one may permute
the rows and columns of W according to the position of
cameras, as shown in image 810. A block-diagonal structure
then emerges, where images with similar backgrounds are
clustered as one subspace.

Recent research on sparse models implies that a parsimo-
nious representation may be a key factor for classification.
Indeed, the sparse coefficients pursued by the technique
described herein show clustering features in experiments of
both synthetic and real-world data. FIG. 9A shows a set 905
of'sample face images in the Extended Yale Face Database B.
The database includes cropped face images of 38 different
people under various illumination conditions. Images of each
person may be seen as data points from one subspace, albeit
heavily corrupted by entries due to different illumination
conditions, as shown in FIG. 9A. In an experiment of the
techniques described herein, each image is downsampled to
48x42 and is vectorized to a 2016-dimensional vector. In
addition, the sparse coefficient matrix W from RoSure-DSP is
used to formulate an affinity matrix as A=W+W?Z, where W is
a thresholded version of W. A spectral clustering method is
utilized to determine the clusters of data, with affinity matrix
A as the input. FIG. 9B provides a set 910 of recovery results
ofhuman face images, according to some embodiments of the
present invention. The three rows from top to bottom are
original images, the components E, and the recovered images,
respectively. Inmost cases, the sparse term E compensates for
the information missing caused by lightning condition. This
is especially true when the shadow area is small. Thus, for a
sparser support of error term E, we can see a visually perfect
recovery of the missing area. This result validates the effec-
tiveness of the technique described herein to solve the prob-
lem of subspace clustering with sparsely corrupted data.

FIG. 10 illustrates an exemplary computing environment
1000 within which embodiments of the invention may be
implemented. For example, computing environment 1000
may be used to implement one or more components of system
200 shown in FIG. 2. Computers and computing environ-
ments, such as computer system 1010 and computing envi-
ronment 1000, are known to those of skill in the art and thus
are described briefly here.

As shown in FIG. 10, the computer system 1010 may
include a communication mechanism such as a system bus
1021 or other communication mechanism for communicating
information within the computer system 1010. The computer
system 1010 further includes one or more processors 1020
coupled with the system bus 1021 for processing the infor-
mation.

The processors 1020 may include one or more central
processing units (CPUs), graphical processing units (GPUs),
or any other processor known in the art. More generally, a
processor as used herein is a device for executing machine-
readable instructions stored on a computer readable medium,
for performing tasks and may comprise any one or combina-
tion of, hardware and firmware. A processor may also com-
prise memory storing machine-readable instructions execut-
able for performing tasks. A processor acts upon information
by manipulating, analyzing, modifying, converting or trans-
mitting information for use by an executable procedure or an
information device, and/or by routing the information to an
output device. A processor may use or comprise the capabili-
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ties of a computer, controller or microprocessor, for example,
and be conditioned using executable instructions to perform
special purpose functions not performed by a general purpose
computer. A processor may be coupled (electrically and/or as
comprising executable components) with any other processor
enabling interaction and/or communication there-between. A
user interface processor or generator is a known element
comprising electronic circuitry or software or a combination
of both for generating display images or portions thereof. A
user interface comprises one or more display images enabling
user interaction with a processor or other device.

Continuing with reference to FIG. 10, the computer system
1010 also includes a system memory 1030 coupled to the
system bus 1021 for storing information and instructions to be
executed by processors 1020. The system memory 1030 may
include computer readable storage media in the form of vola-
tile and/or nonvolatile memory, such as read only memory
(ROM) 1031 and/or random access memory (RAM) 1032.
The RAM 1032 may include other dynamic storage device(s)
(e.g., dynamic RAM, static RAM, and synchronous DRAM).
The ROM 1031 may include other static storage device(s)
(e.g., programmable ROM, erasable PROM, and electrically
erasable PROM). In addition, the system memory 1030 may
be used for storing temporary variables or other intermediate
information during the execution of instructions by the pro-
cessors 1020. A basic input/output system 1033 (BIOS) con-
taining the basic routines that help to transfer information
between elements within computer system 1010, such as
during start-up, may be stored in the ROM 1031. RAM 1032
may contain data and/or program modules that are immedi-
ately accessible to and/or presently being operated on by the
processors 1020. System memory 1030 may additionally
include, for example, operating system 1034, application pro-
grams 1035, other program modules 1036 and program data
1037.

The computer system 1010 also includes a disk controller
1040 coupled to the system bus 1021 to control one or more
storage devices for storing information and instructions, such
as a magnetic hard disk 1041 and a removable media drive
1042 (e.g., floppy disk drive, compact disc drive, tape drive,
and/or solid state drive). Storage devices may be added to the
computer system 1010 using an appropriate device interface
(e.g., a small computer system interface (SCSI), integrated
device electronics (IDE), Universal Serial Bus (USB), or
FireWire).

The computer system 1010 may also include a display
controller 1065 coupled to the system bus 1021 to control a
display or monitor 1066, such as a cathode ray tube (CRT) or
liquid crystal display (LCD), for displaying information to a
computer user. The computer system includes an input inter-
face 1060 and one or more input devices, such as a keyboard
1062 and a pointing device 1061, for interacting with a com-
puter user and providing information to the processors 1020.
The pointing device 1061, for example, may be a mouse, a
light pen, a trackball, or a pointing stick for communicating
direction information and command selections to the proces-
sors 1020 and for controlling cursor movement on the display
1066. The display 1066 may provide a touch screen interface
which allows input to supplement or replace the communica-
tion of direction information and command selections by the
pointing device 1061.

The computer system 1010 may perform a portion or all of
the processing steps of embodiments of the invention in
response to the processors 1020 executing one or more
sequences of one or more instructions contained in a memory,
such as the system memory 1030. Such instructions may be
read into the system memory 1030 from another computer
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readable medium, such as a magnetic hard disk 1041 or a
removable media drive 1042. The magnetic hard disk 1041
may contain one or more datastores and data files used by
embodiments of the present invention. Datastore contents and
data files may be encrypted to improve security. The proces-
sors 1020 may also be employed in a multi-processing
arrangement to execute the one or more sequences of instruc-
tions contained in system memory 1030. In alternative
embodiments, hard-wired circuitry may be used in place of or
in combination with software instructions. Thus, embodi-
ments are not limited to any specific combination ofhardware
circuitry and software.

As stated above, the computer system 1010 may include at
least one computer readable medium or memory for holding
instructions programmed according to embodiments of the
invention and for containing data structures, tables, records,
or other data described herein. The term “computer readable
medium” as used herein refers to any medium that partici-
pates in providing instructions to the processors 1020 for
execution. A computer readable medium may take many
forms including, but not limited to, non-transitory, non-vola-
tile media, volatile media, and transmission media. Non-
limiting examples of non-volatile media include optical
disks, solid state drives, magnetic disks, and magneto-optical
disks, such as magnetic hard disk 1041 or removable media
drive 1042. Non-limiting examples of volatile media include
dynamic memory, such as system memory 1030. Non-limit-
ing examples of transmission media include coaxial cables,
copper wire, and fiber optics, including the wires that make up
the system bus 1021. Transmission media may also take the
form of acoustic or light waves, such as those generated
during radio wave and infrared data communications.

The computing environment 1000 may further include the
computer system 1010 operating in a networked environment
using logical connections to one or more remote computers,
such as remote computing device 1080. Remote computing
device 1080 may be a personal computer (laptop or desktop),
amobile device, a server, a router, a network PC, apeer device
or other common network node, and typically includes many
or all of the elements described above relative to computer
system 1010. When used in a networking environment, com-
puter system 1010 may include modem 1072 for establishing
communications over a network 1071, such as the Internet.
Modem 1072 may be connected to system bus 1021 via user
network interface 1070, or via another appropriate mecha-
nism.

Network 1071 may be any network or system generally
known in the art, including the Internet, an intranet, a local
area network (LAN), a wide area network (WAN), a metro-
politan area network (MAN), a direct connection or series of
connections, a cellular telephone network, or any other net-
work or medium capable of facilitating communication
between computer system 1010 and other computers (e.g.,
remote computing device 1080). The network 1071 may be
wired, wireless or a combination thereof. Wired connections
may be implemented using Ethernet, Universal Serial Bus
(USB), RJ-6, or any other wired connection generally known
in the art. Wireless connections may be implemented using
Wi-Fi, WiMAX, and Bluetooth, infrared, cellular networks,
satellite or any other wireless connection methodology gen-
erally known in the art. Additionally, several networks may
work alone or in communication with each other to facilitate
communication in the network 1071.

An executable application, as used herein, comprises code
or machine readable instructions for conditioning the proces-
sor to implement predetermined functions, such as those of an
operating system, a context data acquisition system or other



US 9,418,318 B2

13

information processing system, for example, in response to
user command or input. An executable procedure is a segment
of code or machine readable instruction, sub-routine, or other
distinct section of code or portion of an executable applica-
tion for performing one or more particular processes. These
processes may include receiving input data and/or param-
eters, performing operations on received input data and/or
performing functions in response to received input param-
eters, and providing resulting output data and/or parameters.

A graphical user interface (GUI), as used herein, comprises
one or more display images, generated by a display processor
and enabling user interaction with a processor or other device
and associated data acquisition and processing functions. The
GUI also includes an executable procedure or executable
application. The executable procedure or executable applica-
tion conditions the display processor to generate signals rep-
resenting the GUI display images. These signals are supplied
to a display device which displays the image for viewing by
the user. The processor, under control of an executable pro-
cedure or executable application, manipulates the GUI dis-
play images in response to signals received from the input
devices. In this way, the user may interact with the display
image using the input devices, enabling user interaction with
the processor or other device.

The functions and process steps herein may be performed
automatically or wholly or partially in response to user com-
mand. An activity (including a step) performed automatically
is performed in response to one or more executable instruc-
tions or device operation without user direct initiation of the
activity.

The system and processes of the figures are not exclusive.
Other systems, processes and menus may be derived in accor-
dance with the principles of the invention to accomplish the
same objectives. Although this invention has been described
with reference to particular embodiments, it is to be under-
stood that the embodiments and variations shown and
described herein are for illustration purposes only. Modifica-
tions to the current design may be implemented by those
skilled in the art, without departing from the scope of the
invention. As described herein, the various systems, sub-
systems, agents, managers and processes can be implemented
using hardware components, software components, and/or
combinations thereof. No claim element herein is to be con-
strued under the provisions of 35 U.S.C. 112, sixth paragraph,
unless the element is expressly recited using the phrase
“means for”

We claim:

1. A computer-implemented method of detecting a fore-
ground data in an image sequence using a dual sparse model
framework, the method comprising:

creating an image matrix based on a continuous image

sequence;

initializing a background matrix, a foreground matrix, and

a coefficient matrix;

performing a subspace recovery process over a plurality of

iterations until convergence of one or more of the back-

ground matrix, the foreground matrix, and the coeffi-

cient matrix over the plurality of iterations, the subspace

recovery process comprising:

updating the background matrix based on the image
matrix and the foreground matrix,

updating the coefficient matrix by minimizing an [.-1
norm of the coefficient matrix using a first linearized
soft-thresholding process, and

updating the foreground matrix by minimizing an [.-1
norm of the foreground matrix using a second linear-
ized soft-thresholding process;
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generating one or more background images based on the

background matrix; and

generating one or more foreground images based on the

foreground matrix.

2. The method of claim 1, wherein the subspace recovery
process utilizes one or more tuning parameters.

3. The method of claim 2, wherein tuning parameters are
applied by the first linearized soft-thresholding process and
the second linearized soft-thresholding process.

4. The method of claim 3, wherein the subspace recovery
process further comprises:

updating the tuning parameters during each of the plurality

of iterations.

5. The method of claim 4, wherein the tuning parameters
comprise one or more Lagrange multiplier values.

6. The method of claim 1, further comprising:

generating a foreground image sequence based on the one

or more foreground images; and

generating a background image sequence based on the one

or more background images.

7. The method of claim 6, wherein

the background image sequence depicts a lymphatic sys-

tem or a blood vessel; and

the foreground image sequence depicts a passage of fluid

through the lymphatic system or the blood vessel to an
organ or tissue.

8. The method of claim 7, further comprising:

using the foreground image sequence to generate a mea-

surement of intensity variation.

9. A computer-implemented method of performing inten-
sity variation segmentation using a dual sparse model frame-
work, the method comprising:

receiving a myocardial perfusion image sequence compris-

ing a plurality of images depicting fluid passing through
a cardiac structure over time;

creating an image matrix based on a continuous image

sequence;

initializing a background matrix, a foreground matrix, and

a coefficient matrix;

performing a subspace recovery process over a plurality of

iterations until convergence of one or more of the back-

ground matrix, the foreground matrix, and the coeffi-

cient matrix over the plurality of iterations, the subspace

recovery process comprising:

updating the background matrix based on the image
matrix and the foreground matrix,

updating the coefficient matrix by minimizing an [.-1
norm of the coefficient matrix using a first linearized
soft-thresholding process, and

updating the foreground matrix by minimizing an [.-1
norm of the foreground matrix using a second linear-
ized soft-thresholding process; and

using the foreground matrix to generate a measurement of

intensity variation across the myocardial perfusion
image sequence.

10. The method of claim 9, further comprising:

generating a sequence of images depicting motion of the

cardiac structure over time based on the background
matrix.

11. The method of claim 9, wherein the subspace recovery
process utilizes one or more tuning parameters.

12. The method of claim 11, wherein tuning parameters are
applied by the first linearized soft-thresholding process and
the second linearized soft-thresholding process.

13. The method of claim 12, wherein the tuning parameters
comprise one or more Lagrange multiplier values.
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14. The method of claim 11, wherein the subspace recovery
process further comprises:

updating the one or more tuning parameters during each of

the plurality of iterations.

15. An article of manufacture for detecting a foreground
data in an image sequence using a dual sparse model frame-
work, the article of manufacture comprising a non-transitory,
tangible computer-readable medium holding computer-ex-
ecutable instructions for performing a method comprising:

creating an image matrix based on a continuous image

sequence;

initializing a background matrix, a foreground matrix, and

a coefficient matrix;

performing a subspace recovery process over a plurality of

iterations until convergence of one or more of the back-

ground matrix, the foreground matrix, and the coeffi-

cient matrix over the plurality of iterations, the subspace

recovery process comprising:

update the background matrix based on the image matrix
and the foreground matrix,

update the coefficient matrix by minimizing an [-1
norm of the coefficient matrix using a first linearized
soft-thresholding process, and
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update the foreground matrix by minimizing an [.-1
norm of the foreground matrix using a second linear-
ized soft-thresholding process;

generating one or more background images based on the
background matrix; and

generating one or more foreground images based on the
foreground matrix.

16. The article of manufacture of claim 15, wherein the

method further comprises:

generating a foreground image sequence based on the one
or more foreground images; and

generating a background image sequence based on the one
or more background images.

17. The article of manufacture of claim 16, wherein

the background image sequence depicts a lymphatic sys-
tem or a blood vessel; and

the foreground image sequence depicts a passage of fluid
through the lymphatic system or the blood vessel to an
organ or tissue.

18. The article of manufacture of claim 17, wherein the

method further comprises:

using the foreground image sequence to generate a mea-

surement of intensity variation.
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